On the Generalized Hyers–ulam Stability of Quartic Mappings in Non–archimedean Banach Spaces
نویسندگان
چکیده
Let X ,Y are linear space. In this paper, we prove the generalized Hyers-Ulam stability of the following quartic equation n ∑ k=2 ( k ∑ i1=2 k+1 ∑ i2=i1+1 . . . n ∑ in−k+1=in−k+1 ) f ( n ∑ i=1,i =i1,...,in−k+1 xi − n−k+1 ∑ r=1 xir )
منابع مشابه
Generalized Hyers–ulam Stability of an Aqcq-functional Equation in Non-archimedean Banach Spaces
In this paper, we prove the generalized Hyers–Ulam stability of the following additive-quadratic-cubic-quartic functional equation f(x + 2y) + f(x− 2y) = 4f(x + y) + 4f(x− y)− 6f(x) + f(2y) + f(−2y)− 4f(y)− 4f(−y) in non-Archimedean Banach spaces.
متن کاملOn approximate dectic mappings in non-Archimedean spaces: A fixed point approach
In this paper, we investigate the Hyers-Ulam stability for the system of additive, quadratic, cubicand quartic functional equations with constants coecients in the sense of dectic mappings in non-Archimedean normed spaces.
متن کاملStability of a Quartic Functional Equation
We obtain the general solution of the generalized quartic functional equation f(x + my) + f(x - my) = 2(7m - 9)(m - 1)f(x) + 2m²(m² - 1)f(y)-(m - 1)² f(2x) + m²{f(x + y) + f(x - y)} for a fixed positive integer m. We prove the Hyers-Ulam stability for this quartic functional equation by the directed method and the fixed point method on real Banach spaces. We also investigate the Hyers-Ulam stab...
متن کاملApproximately generalized additive functions in several variables via fixed point method
In this paper, we obtain the general solution and the generalized Hyers-Ulam-Rassias stability in random normed spaces, in non-Archimedean spaces and also in $p$-Banach spaces and finally the stability via fixed point method for a functional equationbegin{align*}&D_f(x_{1},.., x_{m}):= sum^{m}_{k=2}(sum^{k}_{i_{1}=2}sum^{k+1}_{i_{2}=i_{1}+1}... sum^{m}_{i_{m-k+1}=i_{m-k}+1}) f(sum^{m}_{i=1, i...
متن کاملApproximately generalized additive functions in several variables
The goal of this paper is to investigate the solutionand stability in random normed spaces, in non--Archimedean spacesand also in $p$--Banach spaces and finally the stability using thealternative fixed point of generalized additive functions inseveral variables.
متن کامل